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Resumen

Persistent homology (PH) has emerged as one of the main tools in applied topology for machine
learning. PH has recently shown strong empirical performance in the context of graph classi�ca-
tion. One of the measures that characterize the quality of a graph classi�cation algorithm is its
expressivity, that is, the capacity of the algorithm to produce di�erent labels to non-isomorphic
graphs and the same labels to isomorphic ones. In this talk, we will examine the expressivity of PH.
In the theoretical part, we will show that PH up to a given dimension k is at least as expressive
as the classical k-dimensional Weisfeiler�Lehman algorithm. In a practice-oriented part, we will
analyze the e�ectiveness of PH, using suitable graph �ltrations, in distinguishing actual pairs of
non-isomorphic graphs.
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Resumen

In di�erent areas of application such as spatial biology or ecology, it might be useful to analyse
the topology of the spatial distribution of points representing multi-species data. The chromatic
alpha �ltration [2] is a generalization of the alpha �ltration that can encode spatial relationships
among classes of labelled point clouds, and hence, can be applied to such contexts. In [1], we use
generalized discrete Morse theory to show that the �ech, chromatic Delaunay��ech, and chromatic
alpha �ltrations are related by simplicial collapses. Our result generalizes a result of Bauer and
Edelsbrunner [3] from the non-chromatic to the chromatic setting and provides theoretical justi-
�cation for the use of the chromatic Delaunay�Rips �ltration instead of the much more compu-
tationally expensive chromatic alpha �ltration. This is joint work with A. Natarajan, T. Chaplin
and A. Brown.
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Resumen

Persistence diagrams are central objects in topological data analysis. They are pictorial re-
presentations of persistence homology modules and describe topological features of a data set at
di�erent scales. In this talk, I will discuss the geometry of spaces of persistence diagrams and
connections with the theory of Alexandrov spaces, which are metric generalizations of complete
Riemannian manifolds with sectional curvature bounded below. In particular, I will discuss how
one can assign to a metric pair (X,A) a one-parameter family of pointed metric spaces of (ge-
neralized) persistence diagrams Dp(X,A) with points in (X,A) via a family of functors Dp with
p ∈ [1,∞]. These spaces are equipped with the p-Wasserstein distance when p ≥ 1 and the bottle-
neck distance when p = ∞. The functors Dp preserve natural metric properties of the space X,
including non-negative curvature in the triangle comparison sense when p = 2. When p = ∞,
the functor D∞ is sequentially continuous with respect to a suitable notion of Gromov�Hausdor�
convergence of metric pairs. When (X,A) = (R2,∆), where ∆ is the diagonal of R2, one recovers
previously known properties of the usual spaces of persistence diagrams. I will also discuss some
connections of these results with optimal partial transport. This is joint work with Mauricio Che,
Luis Guijarro, Ingrid Membrillo Solis, and Motiejus Valiunas.
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Resumen

Optimal partial transport considers transportation metrics that allow the comparison of mea-
sures with di�erent total masses. Figalli and Gigli de�ned such a metric between measures on
Ω ⊂ Rn, that allows mass to be created or destroyed by transporting it from or to ∂Ω.

In this talk I will begin by introducing the space of measures Wb(Ω) equipped with Figalli and
Gigli's metric. I will then present our main results concerning the bi-Lipschitz embeddability of
the space of unordered m-tuples in Wb(Ω) into Hilbert space. In particular, we will see that the
space of persistence barcodes with at most m points bi-Lipschitz embeds into Hilbert space. This
is joint work with David Bate.
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Resumen

Bounding and predicting the generalization gap of overparameterized neural networks remains
a central open problem in theoretical machine learning. Neural network optimization trajectories
have been proposed to possess fractal structure, leading to bounds and generalization measures
based on notions of fractal dimension on these trajectories. Prominently, both the Hausdor� dimen-
sion and the persistent homology dimension have been proposed to correlate with generalization
gap, thus serving as a measure of generalization. In this talk, I will present an extended evalua-
tion of these topological generalization measures. These studies show that fractal dimension fails
to predict generalization of models trained from poor initializations. It is further identi�ed that
the ℓ2 norm of the �nal parameter iterate, one of the simplest complexity measures in learning
theory, correlates more strongly with the generalization gap than these notions of fractal dimen-
sion. Time permitting, I will provide an intriguing manifestation of model-wise double descent in
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persistent homology-based generalization measures. This is joint work with Charlie Tan, Qiquan
Wang, Michael Bronstein and Anthea Monod.
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Topology and Geometry of Random Cubical Complexes

Érika Roldán

Resumen

In this talk, we explore the expected topology (measured via homology) and local geometry
of two di�erent models of random subcomplexes of the regular cubical grid: percolation clusters,
and the Eden Cell Growth model. We will also compare the expected topology that these average
structures exhibit with the topology of the extremal structures that it is possible to obtain in the
entire set of these cubical complexes. You can have a look at some of these random structures here
(https://skfb.ly/6VINC) and start making some guesses about their topological behavior.
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Resumen

Persistent homology measures the shape of a dataset with a barcode invariant that encodes
information such as connected components or cycles. Our motivation is to use persistent homology
to study two applications. The �rst consists of measuring the ability of a given sample to capture
the topology of a larger dataset. The second concerns simulations of self-moving wheelchairs in a
clinical environment, as a work package on the REXASI-PRO European project. In both situations,
one ends up with pairs of metric spaces that can be related by either an inclusion or by connecting
them via a middle third object. Thus, we consider induced morphisms between persistent homology
groups. These induce partial matchings [1] that connect the persistent homology barcodes that
come up in both applications. In particular, there is an injection from the intervals in dimension 0
from the subset to the whole dataset; we will examine properties of such injection that guarantee
that the sample �represents well the clusters� from the larger dataset. Also, we will see a diagram
built from such matching which combines the information from kernels, images and cokernels of
persistence modules [2]. On the second application, we obtain an isomorphism between the 0-
dimensional persistent homology intervals, which we call persistence divergence. This allows to
compare chaotic vs ordered movement and also indicates the buildup of deadlocks in simulations.
In addition, our approach detects whether a simulation reaches an equilibrium state and can also
group together the agents that follow similar trajectories.
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Resumen

Recent developments in biology have allowed the simultaneous visualisation of multiple bio-
markers in a single tissue sample at enough resolution to enable the identi�cation of cell types at
a single-cell level, producing an unprecedented amount of biological data.

These new methods, known as multiplexed imaging techniques, call for new geometric data
analysis tools that can handle large data sets while giving interpretable results and relevant insight
into the biological processes at play.

In this talk, we discuss a data analysis pipeline based on persistence homology, one of the main
tools of topological data analysis, and some results of its application to two real multiplexed data
sets.
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